A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces by

نویسندگان

  • HANS TRIEBEL
  • HEIKE WINKELVOSS
چکیده

Let Γ be a closed set in Rn with the Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of the Hausdorff dimension of Γ. Let 0 < d < n. If there exist a Borel measure μ with supp μ ⊂ Γ and constants c1 > 0 and c2 > 0 such that c1r ≤ μ(B(x, r)) ≤ c2r for all 0 < r < 1 and all x ∈ Γ, where B(x, r) is a ball with centre x and radius r, then Γ is called dset. The second aim of the paper is to provide a link between the related Lebesgue spaces Lp(Γ) , 0 < p ≤ ∞, with respect to that measure μ on the one hand and the Fourier analytically defined Besov spaces Bs p,q(R) (s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞) on the other hand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fourier analytical characterization of the

Let ? be a closed set in R n with the Lebesgue measure j?j = 0. The rst aim of the paper is to give a Fourier analytical characterization of the Hausdorr dimension of ?. Let 0 < d < n. If there exist a Borel measure with supp ? and constants c 1 > 0 and c 2 > 0 such that c 1 r d (B(x; r)) c 2 r d for all 0 < r < 1 and all x 2 ?, where B(x; r) is a ball with centre x and radius r, then ? is call...

متن کامل

Characterization of fuzzy complete normed space and fuzzy b-complete set

The present paper introduces the notion of the complete fuzzy norm on a linear space. And, some relations between the fuzzy completeness and ordinary completeness on a linear space is considered, moreover a new form of fuzzy compact spaces, namely b-compact spaces and b-closed spaces are introduced. Some characterizations of their properties are obtained.

متن کامل

Fractal Entropies and Dimensions for Microstate Spaces, Ii

[1] introduced fractal geometric entropies and dimensions for Voiculescu’s microstate spaces ([3], [4]). One can associate to a finite set of selfadjoint elements X in a tracial von Neumann algebra and an α > 0 an extended real number H(X) ∈ [−∞,∞]. H(X) is a kind of asymptotic logarithmic α-Hausdorff measure of the microstate spaces of X. One can also define a free Hausdorff dimension of X, de...

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

Course 421: Algebraic Topology Section 1: Topological Spaces

1 Topological Spaces 1 1.1 Continuity and Topological Spaces . . . . . . . . . . . . . . . 1 1.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Further Examples of Topological Spaces . . . . . . . . . . . . 3 1.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Hausdorff ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006