A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces by
نویسندگان
چکیده
Let Γ be a closed set in Rn with the Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of the Hausdorff dimension of Γ. Let 0 < d < n. If there exist a Borel measure μ with supp μ ⊂ Γ and constants c1 > 0 and c2 > 0 such that c1r ≤ μ(B(x, r)) ≤ c2r for all 0 < r < 1 and all x ∈ Γ, where B(x, r) is a ball with centre x and radius r, then Γ is called dset. The second aim of the paper is to provide a link between the related Lebesgue spaces Lp(Γ) , 0 < p ≤ ∞, with respect to that measure μ on the one hand and the Fourier analytically defined Besov spaces Bs p,q(R) (s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞) on the other hand.
منابع مشابه
A Fourier analytical characterization of the
Let ? be a closed set in R n with the Lebesgue measure j?j = 0. The rst aim of the paper is to give a Fourier analytical characterization of the Hausdorr dimension of ?. Let 0 < d < n. If there exist a Borel measure with supp ? and constants c 1 > 0 and c 2 > 0 such that c 1 r d (B(x; r)) c 2 r d for all 0 < r < 1 and all x 2 ?, where B(x; r) is a ball with centre x and radius r, then ? is call...
متن کاملCharacterization of fuzzy complete normed space and fuzzy b-complete set
The present paper introduces the notion of the complete fuzzy norm on a linear space. And, some relations between the fuzzy completeness and ordinary completeness on a linear space is considered, moreover a new form of fuzzy compact spaces, namely b-compact spaces and b-closed spaces are introduced. Some characterizations of their properties are obtained.
متن کاملFractal Entropies and Dimensions for Microstate Spaces, Ii
[1] introduced fractal geometric entropies and dimensions for Voiculescu’s microstate spaces ([3], [4]). One can associate to a finite set of selfadjoint elements X in a tracial von Neumann algebra and an α > 0 an extended real number H(X) ∈ [−∞,∞]. H(X) is a kind of asymptotic logarithmic α-Hausdorff measure of the microstate spaces of X. One can also define a free Hausdorff dimension of X, de...
متن کاملHistoric set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملCourse 421: Algebraic Topology Section 1: Topological Spaces
1 Topological Spaces 1 1.1 Continuity and Topological Spaces . . . . . . . . . . . . . . . 1 1.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Further Examples of Topological Spaces . . . . . . . . . . . . 3 1.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Hausdorff ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006